
1 INTRODUCTION 

1.1 Motivations and Background 
The advent of ubiquitous information catalyzed by 
the development of the World Wide Web (WWW) 
and by extension the Semantic Web (Hendler & 
Berners-Lee 2010) has transformed the way humans 
work, socialize, and interpret the world.  As a con-
sequence, humans are becoming increasingly de-
pendent on data in nearly every aspect of life.  Prac-
tically speaking, this immense influx of data and 
information, coupled with the rapid rate of change in 
all disciplines, means that it is getting more and 
more difficult to synthesize and apply the state-of-
the-art knowledge in one's own field, in closely al-
lied fields, and even in one's own sub-disciplines. 
Indeed, Design Knowledge and Practice are more 
distributed now than ever, due in large part to vast 
amounts of heterogeneous data related to the design, 
construction, and ecological impact of the built envi-
ronment that span the currently incompatible levels 
of open access, proprietary, and other types of spe-
cial interest databases.  

Meanwhile, new knowledge in allied fields and 
disciplines is influencing architecture in major and 
conceivably unprecedented ways, i.e., in digital 
technology and material science; in energy produc-
tion and consumption by buildings; and systems in-
novation.    

Consistent with past revolutions in discovery 
(Hey Tansley, & Tolle 2009), technology is once 

again transforming the way disciplines observe and 
describe the world, generate new knowledge, com-
municate with one another, and ultimately make im-
pactful decisions.  The instruments that are used to 
support design-learning and advance both the schol-
arship of design and the physical execution of de-
sign have evolved far beyond traditional modes. So-
ciety, at large, produces and digests information by 
vastly different mechanisms than just 50 years ago.   

1.2 What Does This Mean For Architecture? 
Whereas the greatest shifts in general discovery 

were previously achieved by innovation in empirical 
and theoretical models and later, by harnessing the 
power of advanced computational modelling (Hey 
Tansley, & Tolle 2009), the new paradigm for dis-
covery in this era - that is the post-digital era and the 
era of “Big Data” - will be marked by newfound 
abilities to access and consider large amounts of dis-
associated data in order to make discoveries that 
would not be possible in a single view of the data or 
from a single data set. The future of discovery in our 
discipline, as in others, is in the development of new 
tools, frameworks, and methodologies capable of 
bringing design data and information currently com-
partmentalized across areas of expertise, databases, 
and sources back together, in order to make the data 
and information more accessible, reliable, and useful 
in building design, construction, and operation.   
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Gaining access to building design data and related 
information presents new challenges as well as a 
myriad of timely opportunities that will influence 
the future conception and execution of the built en-
vironment, particularly as concern over the impact 
of the built environment on the natural environment 
continues to grow. When up to 90% of a building’s 
lifetime energy use potential can be determined in 
the earliest stages of the design process (Keolien, 
Menery & Curran 1993), expanded access to reliable 
and useful data is essential.   

The first step is to add structure to the data with 
formal, machine readable, conceptual models (Jan-
owicz, Harmelen, Hendler, & Hitzler 2014), capable 
of facilitating more complex decision-support (Ishi-
zaka & Nemery 2013) for architects. In order to 
guide the design of impact-aware buildings, methods 
and tools must, at minimum, be capable of assessing 
up-front energy costs alongside operating energy 
costs, repair and replacement life-cycle costs, and 
potential repair or replacement costs related to haz-
ard mitigation or loss.  However, current tools are 
not yet capable of generating this full picture – or ra-
ther, the data that is needed to achieve this type of 
robust, holistic analysis is not in a format that is well 
structured, reliable, or readily accessible.  

These circumstances are changing, in light of the 
sheer quantity of building-related information that 
exists in digitally fabricated design documents, ma-
terial and manufacturer databases, and even the “ex-
periential data” in the minds of the design profes-
sionals. These developments mean that distinctly 
new tools and methods are needed to facilitate the 
use, reuse, and sharing of design data and 
knowledge (Gruber 1995) over distributed localities 
and processing components.  However, in order for 
data to effectively influence – or inform – the design 
process, mechanisms that are capable of harnessing 
data effectively must be developed and then overlaid 
by frameworks capable of integrating data into the 
design process (Fig. 1). 

 
 

 
Figure 1: Integrating Data into the Design Process 

2 METHODOLOGY 

2.1   Background 
Recognizing the need for enhanced tools and meth-
ods capable of weighing the broader ecological im-
pacts of building design decisions from the outset of 
design is essential if the goal is to achieve the great-
est possible influence over design outcome. En-
hanced decision-support by these computational 
tools will be enabled by harnessing building design 
data and information in new and powerful ways. The 
GreenScale Research Project (The Green Scale 
2014), an interdisciplinary team with expertise in ar-
chitecture, computer science, and knowledge engi-
neering, has been working along three related work-
flows: the development of a new multi-criteria 
design tool called the GreenScale Tool, theory plus 
use-case based approaches for Linked Open Data 
(LOD) methodologies that are beneficial for generat-
ing the data structures and translations required, and 
the creation of modern computational architecture 
infrastructures capable of intelligent processing in 
our world of distributed data processing for Decision 
Support System consumption. 

Simultaneously, our work considers other non-
trivial challenges surrounding ubiquitous data in the 
age of data-driven design.  For example, we strive to 
answer questions including:  
• Beyond harnessing the data itself in a structured 

manner, what are the threats to authorship and 
intellectual property? 

• What are the barriers to reliable, validated data, 
both computational and psychological? 

• What are the opportunities within these same 
challenges? 

• How might the built world adapt to reflect our 
data-driven society?  

• And how might unprecedented – or unfettered – 
access to building information and design data 
change the process of design, the practice of 
architecture, & pedagogy? 

Our research commenced with a study and rigor-
ous testing of existing analysis methods and tools in 
2009.  This study revealed the short-comings of 
many current design analysis and support tools in 
the face of a Big Data driven world, and  meanwhile 
inspired the development of a novel tool and analyt-
ical data models that we discovered to be essential 
for advancing the testing and validation of existing 
tools (discussed in detail in the following section).  
Development of the novel tool also enabled the re-
search of methods for expanded data discovery by 
tools and the development of novel strategies for 
achieving enhanced decision-support beyond what is 
currently possible with the tools tested and most-
widely used in AEC (Ferguson, Buccellato, Var-
deman II 2015). The tool we created, the GreenScale 
Tool (Ferguson, Buccellato, Paolucci, Yu, & Var-
deman II 2016), underwent thorough testing and val-



idation, which led to the realization and subsequent 
hypothesis: prevailing tools and methods are only 
one part of a much larger set of challenges for our 
built environment. We believe that data is, in fact, 
the more critical – and non-trivial – barrier to 
achieving higher resolution and reliability in build-
ing performance and impact analysis simulations.   

In response, in 2013, the research team launched 
the Sustainability Data Initiative which brought to-
gether experts across the academic, industrial, gov-
ernmental, and technology research domains to dis-
cuss the challenge of data and information related to 
the construction of buildings and cities, and to find 
opportunities to leverage existing knowledge, tools, 
technologies, and data to overcome the status quo.   
These conversations led to a series of workshop 
events (Geospatial Semantics Workshop and Ge-
oVoCampDC, 2013 and GeoVoCamp, 2014) spon-
sored by the Spatial Ontology Community of Prac-
tice – or SOCoP (SOCoP 2013) – a community of 
spatial knowledge experts who develop spatial on-
tologies (Ontology Design Patterns.org 2010) or da-
ta pattern languages for use on the semantic web 
(Berners-Lee, Hendler, & Lassila 2001). The initial 
workshop (GeoVoCamp, 2013) was held at the Na-
tional Science Foundation and lead to sustained col-
laborations with experts in semantic web frame-
works and decision theory focused on finding 
practical ways to structure building design infor-
mation and data and advance frameworks capable of 
bringing the data back to the user in new and more 
meaningful ways.    

2.2   A Study of Tools and Methods 
Prevailing computational tools available to and 

used by architecture and engineering professionals 
purport to gather and present thorough and accurate 
perspectives of the environmental impacts associat-
ed with their contributions to the built environment. 
Research of building modeling and analysis software 
used by the Architecture, Engineering, Construction, 
and Operations (AECO) industry reveals that many 
of the most heavily relied-upon industry tools are 
isolated in functionality, utilize incomplete models 
and data, and are, in fact, disruptive to normative 
design and building optimization workflows (Fergu-
son, Buccellato, Paolucci, Yu, & Vardeman II 
2016).  

At the outset of this research and as mentioned 
above, a study of current architectural design tools 
revealed large gaps in the capabilities to advance the 
design and execution of both data-aware and impact-
intelligent buildings.  A review of primary functions 
and limitations of prevailing tools (Ferguson, Buc-
cellato, Paolucci, Yu, & Vardeman II 2016) led to a 
series of case studies to further evaluate the current 
state-of-the-art in tools and building energy analysis, 
followed by the development of more advanced 

models (Ferguson, Vardeman II, Buccellato 2015) to 
assess, among various factors, lifetime building en-
ergy consumption alongside operating energy use.  
The novel GreenScale Tool was developed in re-
sponse to the functional comparison of tools and the 
need for this specific functionality. The fundamental 
goals of this particular effort, as well as some of the 
goals of our research, in general, are to a) better un-
derstand the efficacy of tools used by architects and 
engineers to influence the design process and b) to 
increase the use and efficacy of building impact 
studies conducted during the building design pro-
cess. 

An analysis of the current state of AECO model-
ing and analysis platforms (Ferguson, Buccellato, 
Paolucci, Yu, & Vardeman II 2016) revealed a num-
ber of tools that endeavor to process one type of en-
ergy analysis or another, whereas they either have 
limited – or no – capacity to evaluate material varia-
tions against overall building energy impact, includ-
ing pre-construction material energy costs.  Addi-
tionally, many of the tools are not able to operate 
beyond a narrow set of functions within each appli-
cation, and are almost always limited to single-
metric calculations, meaning that no comparative 
analysis can be completed without extensive manual 
intervention.  For example, there are individual tools 
that are able to produce an embodied energy simula-
tion that categorizes total energy summations into 
specific categories, such as transportation impacts, 
construction processes, and manufacturing impacts; 
however, if only one type of analysis is possible, 
separate analysis is required to anticipate lifetime 
building energy impact, including operating energy.   

Other, distinct tools used frequently in industry 
can consider isolated metrics like  daylighting poten-
tial,  carbon  emission  totals,  water  usage,  and  
ventilation capabilities, conduct performed  carbon  
emission  analysis  and  thermal  calculations that  
include  daylight  and shadow.  However, many of 
these tools function in a non-iterative manner, mak-
ing it difficult to meaningfully analyze – or respond 
to – how changes made during the design process 
might ultimately influence a building’s overall per-
formance. There are also tools, such as SuAT ®, that 
will separate analyses into distinct categories, such 
as thermal flux, zoning, and climatology, and while 
these calculations are important, all are based on 
thermal calculations, which is what we refer to as 
single-metric. The multi-metric comparative analy-
sis that we are referring to exists where broader and 
more disparate types of simulation comparisons can 
be made and enhanced by decision support. For ex-
ample, the multi-metric analysis required by the 
modern industry would be able to take these thermal 
results and dynamically compare them to embodied 
energy data types, material shipping information, 
market costs for parts, and other data sets that are 
currently not compatible – but need to be. 



In addition to these function-based comparisons, 
several experiments were conducted to gain an un-
derstanding of prevailing industry tools’ relative 
strengths and weaknesses, focused in two key areas: 
capacity for estimating key metrics of building ener-
gy use in operation and initial (embodied) energy 
consumption. To accomplish this, simulations were 
conducted with a consistent set of architectural 
models using a select set of prevailing, commercial-
ly-available analysis tools (Fig. 2) and a control 
model, the GreenScale Tool (GST) (Ferguson, Buc-
cellato, Paolucci, Yu, & Vardeman II 2016).  

Figure 2: Standard AEC Tools and Respective Functions 

The results of the experiments revealed large dif-
ferences in calculated results for the same architec-
tural building models. This was due, in part, to dif-
fering levels of precision and accuracy in the 
settings and calculation methods between the tools. 
Further investigation, including verification by 
manual calculation methods, revealed that the ma-
jority of the numerical differences (Fig. 3) resulted 
from discrepancies originating in the raw data values 
and the associated material properties that the com-
mercial tools were using to tabulate the results. For 
example, prevailing analysis tools may use signifi-
cantly different density values for the same material, 
yielding significantly different results when aggre-
gated over an entire building. Furthermore, observa-
tions of the outputs of these tools (i.e. aggregated 
energy use totals, for example) demonstrate that 
building simulation programs used by architects to-
day lack uniform data and processes to facilitate the 
consistent  and  reliable  evaluation  of  both  cus-
tomary  and  novel  building  practices, meaning that 
there is a high degree of uncertainty behind the criti-
cal decisions that architects are making using these 

tools. At minimum, this suggests that the decision-
support tools that are currently available in the mar-
ketplace may vary widely in accuracy.  

Figure 3: Industry Standard Tool Experiment Results 

Specifically, there are differences in numerical 
values due to rounding and approximation tech-
niques as well as issues with the semantics of the 
naming system for materials, among other proper-
ties, leading to comparisons being a best guess in a 
lot of cases. For example, certain databases will rec-
ord material data (assume for pine), but the values 
can also differ for the exact same pine because of 
unit translation precision or because they are refer-
ring to two different types of the same pine but from 
different geographical regions that yield slightly dif-
ferent wood due to different soil, rainfall, or mineral 
availability. As expected, the potential propagation 
of these differing values can make building simula-
tions vary drastically to say the least.  

The study of the existing tools, the results of the 
experiments conducted with them, and industry case 
studies allied with these concerns (Ferguson, Buc-
cellato, Paolucci, Yu, & Vardeman II 2016) reveal 
the following: 
• Single-metric analysis tools are not capable of 

evaluating the full energy impact of a building 
over its lifespan; a single view of data, or a se-
ries of independent views, is less efficient – and 
potentially less effective – than multi-metric 
analysis tied to consistent,  uniform data sources.  

• Whether single or parametric utilities, data and 
processes that are utilized by prevailing analysis 
tools are currently non-standard and embody too 
much uncertainty (in the data sourcing and thus 
in the outputs). Uncertainty is also not adequate-
ly considered in the decision-making process.  

• Regardless of the capability of a tool (GST or oth-
erwise), data reliability and consistency is criti-
cal to achieve a complete picture of environmen-
tal impacts, and ultimately, data is the central 
factor for advancing the use of simulation in ar-
chitecture. 

3 DATA  

3.1 Confronting the data challenge in architecture 
Gaps in data – whether in provenance, reliability, 

accuracy, etc. – increase uncertainty in the results 
handed to the user by the tool and meanwhile con-



tribute to widening gap between intended, simulat-
ed, and achieved building performance. In the data-
rich disciplines, like the life sciences, or even in 
more closely-allied disciplines, like engineering, 
gaps in data are mitigated as these disciplines turn to 
current computational and Big Data analytics tech-
nologies to enable broader access to and reliability 
of their data.   When compared to other disciplines, 
like automotive and aerospace design, or even close-
ly allied industries, like civil engineering, architec-
ture is currently underutilizing these potentially very 
powerful technologies; our data remains largely si-
loed, fragmented across areas of expertise, allied in 
sub-disciplines, or tied up in proprietary databases.  

Our discipline’s relatively restricted use of ad-
vanced computational models in conjunction with 
limitations of the data it is currently using, means 
that decisions are being made by humans consider-
ing a smaller, and often skewed, scope of parameters 
and criteria than could be possible by utilizing Big 
Data practices and modern computing power applied 
to that data. If such methodologies could be har-
nessed by the building professions -- by the archi-
tects and engineers who will determine the future of 
the built environment -- we could achieve a much 
greater understanding and practical ability to affect 
the way that the built environment is conceived, how 
resources are consumed or conserved, and the effect 
of design choices today on the future. 

3.2 Here’s How: LOD Principles for Architecture 
The WWW with which we are all familiar – and de-
pendent upon – has evolved from a network of doc-
uments into a Semantic Web of intelligent data that 
enables access to a volume of information previous-
ly unimaginable.  However, in order for humans to 
make sense and proper use of the vast amount of da-
ta available on the web, strategies that have been 
developed to support data interoperability and con-
textualization need to be fully implemented. Ma-
chine-readable data formats based on the web stand-
ard Resource Description Framework (RDF) 
(Resource Description Framework 2014) computa-
tionally appropriate data structures (Ontology De-
sign Patterns 2010) can all be enlisted for use in 
modern Decision Support Systems. However, for 
this to be successful, we must be able to correctly 
describe, classify, and relate cross-domain data. The 
aforementioned formalizations of data enable com-
putations to “understand” human conceptualizations 
and link – or connect – the data that matters to that 
conceptualization or specific human effort (like de-
sign).   

Because ontologies have the capability to capture 
complex logical relationships, frameworks for pro-
moting data sharing, discovery, and interoperability 
via the semantic web are being widely adopted, from 
the scientific research community (Kandil, Hastak, 

Bridges 2014) to the US government (DATA.GOV 
2016) to the private sector (Samwald, Coulet, Huer-
ga & others 2012).   

There is significant ongoing research aimed at 
developing tools and techniques to lower the barrier 
to adopting semantic technologies, including several 
on-going efforts in architecture and allied profes-
sions to create extensive controlled vocabularies, 
like the Industry Foundation Classes (IFC) (Building 
Smart 2014), a commonly-used data model designed 
to facilitate interoperability within the AEC commu-
nities.  

In fact, the origin of pattern languages is not re-
mote from architecture.  It was Christopher Alexan-
der who first introduced the concept of pattern lan-
guages to describe problems and specify potential 
solutions in his A Pattern Language (Alexander, 
Ishikawa, & Silverstein), which describes design 
patterns for architectural design, building, and plan-
ning. The goal of Alexander’s patterns for architec-
ture is to enable people to describe their own con-
ceptualization of design at different scales: for 
houses, streets, and cities.  Inspired by this work, the 
software engineering community began to adopt 
software design patterns that created reusable, suc-
cessful solutions to commonly-occurring program-
ming problems. (Gamma, Helm, Johnson, Vlissides 
1995).   Ontology Design Patterns (ODPs) share a 
similar goal: to enable communities to describe their 
domain and domain-specific data using (their) natu-
ral vocabularies and meanwhile provide additional 
guidance to the data and formalization of the pro-
cess.  

To this end, our research group recognizes the da-
ta challenge in architecture and also the capability of 
ontology design patterns to tie together these data 
schema with varying degrees of formal specification 
in conjunction with existing controlled vocabularies 
used by the AECO community. Our research team, 
in collaboration with experts in ontology, developed 
a formal Material Transformation Pattern (MTP) 
(Vardeman, Krisnadhi, Cheatham & others 2014) to 
contextualize necessary data and provide automated 
reasoning support for Life Cycle Inventory analysis 
related to construction materials (Janowicz, Kris-
nadhi, HU & others 2015).  

Briefly, the MTP (Fig. 4) “tells” a computer there 
exists a class of things in the world called a Materi-
alTransformation that has inputs (hasInput) and has 
outputs (hasOutput) that these both refer to Materi-
alObjects. It also tells the computer that a Material-
Transformation has some spatial extent, a Neighbor-
hood, in which the transformation must occur and 
some specific time interval associated with the trans-
formation. Lastly, we specify a class of Materi-
alObjects that are necessary for the transformation 
(manufacturing equipment, tools, etc) and that are 
necessary for the process to proceed, but are not part 
of the transformation. These we call Catalyst. Be-



hind these logic classes are a set of machine reada-
ble axioms in formal logic, the most interesting of 
which expresses that a MaterialTransformation has 
at least one input that is not part of the output and at 
least one output that is not part of the input, which is 
the crux of the notion of transformation.  

Figure 4: Material Transformation Pattern Data Model 

The MTP is designed to work in conjunction with 
other ontology design patterns, such as the semantic 
trajectory pattern (Hu, Janowicz, Carral & others 
2013) that defines “a path through space on which a 
moving object travels over time”. An example of the 
most basic use case would be to GPS tag an object 
as it traverses some path through space and time re-
sulting in a GPS data output that is a Semantic Tra-
jectory. Such a pattern might also be applied to ma-
terial supply chains to describe the path that objects 
take during their life cycle. MTP lets us then de-
scribe the situation in the data where one object may 
stop, be transformed, and continue its journey with a 
new identity. When a computer detects this situation 
in the data, it may “infer” that a transformation has 
occurred.  

Other patterns such as “a Minimal Ontology Pat-
tern for Life Cycle Assessment Data” provide a con-
ceptual model for Life Cycle Assessment and Life 
Cycle Inventory at a higher domain specific level. 
This pattern can be formally “aligned” against lower 
level patterns, such as the trajectory and transfor-
mation patterns, to give domain practitioners a natu-
ral conceptual “view” to consume the data and ask 
questions of the data.  

Assuming that material and material supply chain 
data were published as Linked Open Data using 
these design patterns, it is conceivable that machines 
could automatically discover relationships in data 
atoms using probabilistic machine learning algo-
rithms, such as the multiway neural network ap-
proach that Google (Dong, Gabrilovich, Heitz & 
others 2014) has developed as part of its Knowledge 
Vault effort. Methods such as these add new infor-
mation to a knowledge graph along with the proba-
bility that the relationship represented in the graph is 
a true relationship. This form of algorithm may hold 
advantages over traditional reasoning algorithms 
which are strictly coupled to the definitions ex-
pressed in mathematical logic. 

4 FRAMEWORKS: ALIGNING DATA & TOOLS 

4.1 Rules Engine Layer 
As indicated by our initial study, many simulation 
tools in use today perform data analysis on a single 
design metric, but in the era of Big Data, tools will 
need the capacity to run efficiently through several 
metrics simultaneously and over a large quantity of 
design choices. To reach an optimal level of useful-
ness and efficacy, modern multi-criteria decision 
tools must be capable of performing routine calcula-
tions efficiently, considering a much broader range 
of data and information, including, as we propose, 
data harvested from heterogeneous sources linked to 
all aspects architectural material manufacturing, 
construction, and usage. 
In response, Green Scale Research aims to discover 
more efficient methods to both aggregate and pro-
cess data. This work is further motivated by our un-
derstanding that within certain existing simulation 
tool databases, there is syntactical and semantic am-
biguity that is not adequately addressed by the ap-
plication of regular expressions or even in generat-
ing the correct nominal values for material data.  By 
extension, adjustments in energy calculations are of-
ten overlooked due to these misinterpretations be-
cause of the structural nature of Open Green Build-
ing XML-based (gbXML) (Green Building XML 
2016) schemas, which are commonly implemented 
in architectural design tools. Additionally, the ca-
pacity of current tools to interpret XML tag-
structured data is limited. However, by using the 
PyKE (Python Knowledge Engine 2016) rules en-
gine, rules can be adaptively constructed to fix these 
discrepancies and can be extrapolated for use across 
other rules engines and applications.  
PyKE is a knowledge-based inference engine in-
spired by Prolog11 (Logic Programming 2016) but 
implemented completely in a programming lan-
guage, called Python. It is a type of logic program-
ming allowing customized, domain-specific system 
rules. Incorporating rule sets with existing simula-
tion processes means that there is an extra set of 
knowledge: in addition to a set of instructions, the 
model now has an additional set of information de-
scribing what those pieces of information mean as 
well as how to proceed in special cases. It also 
means that originally missing schema data, imper-
fections in schema layout, and capturing human-
implicit “rules of thumb” can all be resolved compu-
tationally instead of manually. 

In our own Tool study, we specifically focus on 
the incorporation of construction material data into a 
multi-metric application and develop ways to access 
additional data without harming the performance of 
a multi-metric application.  Next, studies were com-
pleted to explore how these methods could com-
municate beneficially with the larger Semantic Web. 



One of the avenues of research included developing 
a PyKE Rules Engine (Ferguson, Vardeman, Buc-
cellato 2015). A rules engine is a part of a compu-
ting infrastructure that captures categories of scenar-
ios and the associated set of actions or computations 
that need to happen when a certain schema instance 
is encountered.  

For example, a rule might be to use the T-by-2T 
“rule of thumb” for describing spread footings. This 
piece of knowledge about a building structure is 
translated into computer code and stored electroni-
cally in what is called a Knowledge Base, so that the 
machine knows how to process something of this 
category each time certain types of building footings 
are encountered in computational representations. 
Layers of computations, such as these, lead to more 
accurate results than would be generated without 
knowing the rule(s). The ultimate goal is to seek 
machine-assisted solutions that will positively im-
pact the way that the built environment is conceived 
and executed.   

For this portion of the study, we implemented the 
previously developed GS Tool (Ferguson, Buccella-
to, Paolucci, Yu, & Vardeman II 2016) with sets of 
rules as they were needed to fill in information that 
is not explicit in the schema file that is handed to the 
tool itself. To explore experimental methods of rules 
communication used for handling the types and 
quantities of data that we anticipate means that we 
will need to collectively work toward bridging the 
gap between our tools,  the larger semantic web, and 
decision support, all using linked open data princi-
ples (Janowicz, Hitzler, Adams & others 2012). The 
Green Scale (GS) Tool (Ferguson, Buccellato, Pao-
lucci, Yu, & Vardeman II 2016) itself was built to 
seamlessly integrate with the normative workflow of 
the architect and to provide a broader perspective of 
the potential ecological impacts of design decision-
making through a multi-criteria, comparative analy-
sis including BEAM thermal heat flux model and 
Embodied Energy life cycle inventory model (Fer-
guson, Buccellato, Paolucci, Yu, & Vardeman II 
2016).  

4.2 What Does the Horizon Look Like 
This above instance of a PyKE implementation 
builds on the GS Tool by adding a flexible frame-
work for mapping regular expressions to normative 
conditions and by linking regular expressions to an 
associated action for several types of architectural 
design decisions (material choice, geometry discrep-
ancies, and architectural best-practice rules).  

However effective, this is only one set of solu-
tions to a much larger problem. These rule sets and 
tools need to become more accessible and eventually 
need to be part of a larger cyberinfrastructure that 
can handle distributed processing.  Currently the ef-
forts of the research still function within a closed 

computational environment often a single machine. 
Some organizations are beginning to move data 
stores to cloud-based locations and are providing 
their tools as a service via the internet.  Similarly, 
the computational components we are researching 
and developing need to have access to many other 
elements, such as reasoners, triple stores, and other 
computational models (The Digital Manufacturing 
and Design Innovation Institute 2016). Upon further 
development of a Linked Data Platform (W3C: 
Linked Data Platform 2015) used for distributed 
computing, the rules layers we develop, the tools we 
create, and the resulting knowledge bases generated 
can all be moved to the Cloud and subsequently en-
hanced and improved upon by Machine Learning 
[10]. Additionally, light weight (W3C: SPIN 2015) 
rules can be integrated with query mechanisms like 
the web standard (W3C: SPARQL 2015) for gener-
ating inference based connections with relevant 
methods in the expanding knowledge base. Addi-
tionally, SPIN could provide mechanisms for data 
consistency and integrity checks within the 
knowledge base. 

Using a framework such as this, varying architec-
tural perspectives and experience can be leveraged 
to generate a broader set of accessible and reliable 
data. Using specific types of interfacing and web 
services such as REST APIs (Fielding 2000), the ac-
cessibility of our data can be expanded and the 
framework can be made effective for cloud-
computing environments. This means that advanced 
implementations of our research could enable wire-
less and web-based applications to communicate 
with other applications and more usefully connect a 
series of elements, tools, sensors, etc., within the 
same system or for the same simulation purposes.  

5 CONCLUSION 
By virtue of the mechanisms that we use to ob-

serve and describe the world, generate new 
knowledge, and communicate with one another, we 
arguably “know” more than has ever been known to 
civilization, but consequently – due to this prolifera-
tion of information – there is that much more to 
know. Yet, in many disciplines, like architecture, 
this abundance of information has made the design 
and execution of the built world more complicated – 
not less – and the utilization of design related data 
and information more challenging, due to the sheer 
quantity of data, the myriad places where the data 
“lives”, and the limitations of the tools that we de-
pend on to use the data effectively.  And this is just 
the data that already exists.  What about the future, 
and the data that is generated daily, in BIM, in simu-
lations, and by our buildings?    

Given the predominant use of digital design and 
analysis tools in building design today, a building’s 
lifespan now begins in computer simulation.  There-



fore, the consequences of consistency and reliability 
– of both the tools and the data – impact the envi-
ronment from the commencement of the design pro-
cess throughout each iterative step thereafter, includ-
ing the selection of materials, the methods of their 
assembly, and the myriad long-term implications of 
a building’s design on the environment.  And yet, 
without a more efficient way to discover data, we 
will never become more effective in harnessing it, 
understanding it, or, perhaps most importantly, in 
applying the data. 

 While concerns about the proprietary nature of 
building design – and by extension, the data “creat-
ed” in the process of design – will persist, by recog-
nizing the opportunity of utilizing existing Big Data 
practices along with modern computing power ap-
plied to that data, it would be possible, in this post-
digital era, to advance beyond the status quo, in 
tools and in data, to achieve greater understanding 
about the impact of our design decisions and en-
hanced practical ability to affect the way that the 
built environment is conceived and how resources 
are consumed or conserved. 
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